Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer.
نویسندگان
چکیده
Recent advances suggest that it may be possible to construct simple artificial cells from two subsystems: a self-replicating cell membrane and a self-replicating genetic polymer. Although multiple pathways for the growth and division of model protocell membranes have been characterized, no self-replicating genetic material is yet available. Nonenzymatic template-directed synthesis of RNA with activated ribonucleotide monomers has led to the copying of short RNA templates; however, these reactions are generally slow (taking days to weeks) and highly error prone. N3'-P5'-linked phosphoramidate DNA (3'-NP-DNA) is similar to RNA in its overall duplex structure, and is attractive as an alternative to RNA because the high reactivity of its corresponding monomers allows rapid and efficient copying of all four nucleobases on homopolymeric RNA and DNA templates. Here we show that both homopolymeric and mixed-sequence 3'-NP-DNA templates can be copied into complementary 3'-NP-DNA sequences. G:T and A:C wobble pairing leads to a high error rate, but the modified nucleoside 2-thiothymidine suppresses wobble pairing. We show that the 2-thiothymidine modification increases both polymerization rate and fidelity in the copying of a 3'-NP-DNA template into a complementary strand of 3'-NP-DNA. Our results suggest that 3'-NP-DNA has the potential to serve as the genetic material of artificial biological systems.
منابع مشابه
Efficient and Rapid Template-Directed Nucleic Acid Copying Using 2′-Amino-2′,3′-dideoxyribonucleoside−5′-Phosphorimidazolide Monomers
The development of a sequence-general nucleic acid copying system is an essential step in the assembly of a synthetic protocell, an autonomously replicating spatially localized chemical system capable of spontaneous Darwinian evolution. Previously described nonenzymatic template-copying experiments have validated the concept of nonenzymatic replication, but have not yet achieved robust, sequenc...
متن کاملSynthesis of N3′-P5′-linked Phosphoramidate DNA by Nonenzymatic Template-Directed Primer Extension
A fast and accurate pathway for nonenzymatic RNA replication would simplify models for the emergence of the RNA world from the prebiotic chemistry of the early earth. However, numerous difficulties stand in the way of an experimental demonstration of effective nonenzymatic RNA replication. To gain insight into the necessary properties of potentially self-replicating informational polymers, we h...
متن کاملUncovering the Thermodynamics of Monomer Binding for RNA Replication
The nonenzymatic replication of primordial RNA is thought to have been a critical step in the origin of life. However, despite decades of effort, the poor rate and fidelity of model template copying reactions have thus far prevented an experimental demonstration of nonenzymatic RNA replication. The overall rate and fidelity of template copying depend, in part, on the affinity of free ribonucleo...
متن کاملEnhanced Nonenzymatic RNA Copying with 2-Aminoimidazole Activated Nucleotides.
Achieving efficient nonenzymatic replication of RNA is an important step toward the synthesis of self-replicating protocells that may mimic early forms of life. Despite recent progress, the nonenzymatic copying of templates containing mixed sequences remains slow and inefficient. Here we demonstrate that activating nucleotides with 2-aminoimidazole results in superior reaction kinetics and impr...
متن کاملNonenzymatic copying of RNA templates containing all four letters is catalyzed by activated oligonucleotides
The nonenzymatic replication of RNA is a potential transitional stage between the prebiotic chemistry of nucleotide synthesis and the canonical RNA world in which RNA enzymes (ribozymes) catalyze replication of the RNA genomes of primordial cells. However, the plausibility of nonenzymatic RNA replication is undercut by the lack of a protocell-compatible chemical system capable of copying RNA te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 44 شماره
صفحات -
تاریخ انتشار 2013